TY - JOUR

T1 - Variations of little Higgs models and their electroweak constraints

AU - Csáki, Csaba

AU - Hubisz, Jay

AU - Kribs, Graham D.

AU - Meade, Patrick

AU - Terning, John

PY - 2003

Y1 - 2003

N2 - We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4)4/SU(3)4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the "minimal" implementation of SU(6)/Sp(6) is bounded by f>3.0TeV throughout most of the parameter space, and SU(4) 4/SU(3)4 is bounded by f2=f1 2+f22>(4.2TeV)2. In certain models, such as SU(4)4/SU(3)4, a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion.

AB - We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including variations of the littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4)4/SU(3)4 models. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the "minimal" implementation of SU(6)/Sp(6) is bounded by f>3.0TeV throughout most of the parameter space, and SU(4) 4/SU(3)4 is bounded by f2=f1 2+f22>(4.2TeV)2. In certain models, such as SU(4)4/SU(3)4, a large f does not directly imply a large amount of fine-tuning since the heavy-fermion masses that contribute to the Higgs boson mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons and a small (or vanishing) coupling between heavy U(1) gauge bosons and light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion.

UR - http://www.scopus.com/inward/record.url?scp=0141453340&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141453340&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.68.035009

DO - 10.1103/PhysRevD.68.035009

M3 - Article

AN - SCOPUS:0141453340

VL - 68

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 1550-7998

IS - 3

M1 - 035009

ER -