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Quantitative Insights

Valuing Contracts with Payoffs Based on Realized Volatility
Realized volatility (RV) forward contracts allow users to take aposition
whose payoff depends directly on the future volatility of an index. You
replicate the payoff of an RV contract by means of aportfolio of standard
index options and futures. The fair value of the contract is the cost of imple¬
menting this replicating strategy. Because the strategy involves options, the
fair forward realized volatility of the index turns out to be close to
implied volatilities near the money. For an example of an RV transaction
the S&P 500, see the section on Highlight Uses of Derivati

c a n

c u r r e n t

o n

v e s .

I n t r o d u c t i o n Users of standard index options have exposure to both the underlying level
of the index and its volatility. Sometimes, investors want straightforward
exposure to the future volatility of the index itself. Realized volatility (RV)
contracts allow users to take aposition whose payoff depends directly and
only on the future volatility of the index. In this note we focus on RV for¬
ward contracts.

An RV forward contract is defined to pay at expiration the difference in
dollars between the actual return volatility realized by the index over the
lifetime of the contract and some previously agreed upon “delivery”
volatility’. This delivery volatility is analogous to the delivery price of a
stock forward contract. The RV contract must also specify the precise
method for calculating at expiration the realized volatility between contract
inception and expiration; anatural choice is the standard estimate of daily
volatility as the square root of the annualized variance of daily index
returns, calculated from closing market levels.

To be specific, consider aone-year daily RV contract on the S&P 500 index
with adelivery volatility of 14% and anotional amount of $100 per volatil¬
ity point. Suppose that at the end of one year, the computed realized volatil¬
ity turns out to be 16%. In this event, the holder of the long position in the
RV forward contract will receive $200 from the holder of the short posi¬
tion. If instead, the computed realized volatility turns out to be 12%, the
long holder will pay the short holder $200.

Like other derivatives, the fair value of an index RV forward contract is the
cost of replicating its payoff using other instruments. We will show that
you can replicate the payoff of an RV forward contract by means of a

7. Such acontract has a“notional amount” of $1, because it pays $1 per volatility point.
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portfolio of standard index options and futures; the options component of
the replicating portfolio is static, and need never be adjusted, while the
futures portfolio must be continually rebalanced. It may seem surprising
that acombination of options and futures, each of whose payoff and value
is sensitive to the index level, can be combined to create apayoff that
depends on volatility but is insensitive to the index level.

The value of an RV forward contract is the cost of implementing this repli¬
cating strategy. Just as the forward price of astock is defined to be the
delivery price of astock forward contract that makes its value zero, the for¬
ward realized volatility be defined as the delivery volatility that makes the
RV forward contract have zero value. This represents the future realized
volatility we can lock-in today. Because the replicating strategy involves
options, the fair forward realized volatility often turns out to be close to the
current implied volatility of near-the-money options. Holders of realized
volatility contracts are therefore long the spread between current implied
volatility and future realized volatility. For this reason, such contracts may
be anatural vehicle for investors who want to take aposition on the spread
between today’s implied volatility and future realized volatility.

Valuing and Hedging
Realized Volatility
F o r w a r d C o n t r a c t s

Consider an RV forward contract on an index (such as the S&P 500) with a
delivery volatility of Kbetween now and the contract expiration at time T
later. Denote the current index level by 5, the continuously compounded
annual riskless rate by r, the dividend yield by 6, and the annualized real¬
ized volatility over the life of the contract observed at expiration by l-p. The
payoff of the contract at expiration is

(Xt-K) dol lars

where we have assumed anotional value of one dollar per volatility point.

For the purpose of the contract terms, Xj- is defined as

I1 0 0 EQ. 1

where Vis the variance of observed daily index returns over the lifetime T
of the contract; dividing by Tannualizes the volatility, and multiplying by
100 expresses it in percentage points.
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What is the value today of acontract with this payoff? It is the present
value of the expected future realized volatility less the present value of the
delivery volatility. In the spirit of risk-neutral options pricing, it is the
present value of the expected future payoff, that is

exp(-rT)[F^-K] EQ.2

where Fj; =E[Lj] denotes the expected value of the future realized volatil¬
ity to expiration. Areasonable way to estimate Fj is to take the average of
the forward local volatilities of the index over asimulation of all future
index paths, since these are the future volatilities that can be locked in using
currently available options. For more information on extracting local vola¬
tilities from index options prices, see Derman, Kani and Zou®.

While this approach suggests aprice for the contract, it doesn’t explain
how to replicate it. The key to replicating the volatility contract is the
observation that, for an index that evolves continuously, there is astrict
relation between realized variance Vand index level 5, at time t, namely’

V_\dS,
21*̂ 1 -loĝ E Q . 3

The first term in this equation represents the total return over the life of the
contract obtained from along position in 1/5, shares of the index, continu¬
ally rebalanced as 5, changes. The second term represents ashort position
in alog contract̂ ,̂ aderivative security that pays off an amount related to
the logarithm of the return on the index at expiration. According to Equa¬
tion 3, double the value of aportfolio of these two positions is the replica¬
tion value of the variance V. Each of these positions can be valued by
standard options pricing techniques to give the present value

<V> =2e-^^(r-5)T-2Flog

8. Derman E., I. Kani and J. Z. Zou. The Local Volatility Surface. Quantitative
Strategies Research Notes, December 1995.

9. Strictly speaking, this relation is only true when the variance Vis calculated
from continuously observed returns, but daily returns are agood enough
approximation.

10. See for example A. Neuberger, The Log Contract, The Journal of Portfolio
Management, Vol 20, no 2(1994).
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where <V> is the present value (or discounted expected value) of variance
Vand P|og is today’s market value of the log contract.

Since there is no traded log contract security, we cannot get P|og from the
market. However, we can create this security synthetically, as follows.

Mathematically, alogarithmic payoff can be well approximated by the
expression

;2[~T~ J
S tlog-̂  =O n

'Sj -
So

EQ.4
0

when Sjis not too far from the initial value Sq .The first term in Equation 4
is proportional to the final index level Sj-, and can be exactly replicated by
along position in I/Sq forward contracts with index delivery price Sq ,

whose ne t cur ren t va lue is e

quadratically with the deviation of the final index level from the initial, and
can be replicated by aportfolio of standard calls and puts with the same
expiration, and with strikes evenly spaced about Exhibit 21 shows
that the quadratic and higher order pieces of the logarithmic payoff can be
accurately replicated in this way.

- 5 r - r T
.The second term’s payoff increases- e

E X H I B I T 2 1

Replication of the Quadratic and Higher Order Pieces of the
Logarithmic Payoff using Options
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11. We can fit the quadratic piece of the logarithmic payoff with an evenly
spaced strip of out-of-the-money calls and puts with equal weights in addition
to at-the-money calls and puts each with half the weight. To fit the higher
order pieces of the logarithmic payoff we need to adjust the weights so that
higher strike options will have somewhat smaller weights than lower strike
options.
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We can therefore think of the value of the log contract as approximately
equal to the value aforward contract on the index itself, less the value of
the portfolio of evenly spaced standard calls and puts, that is

- 5 r - r T

l̂og - P E Q . 5= e - e
c p

We can combine Equations 4and 5to obtain the fair value of the variance
V a s

- 5 r

-e-̂ '̂ -Pcp)(V) =2e-"^(r-5)7’-2(e EQ. 6

From Equation 1, we obtain the fair value of the realized volatility Zj as

1

<Î ) =10o||[e-'-̂ (r-5)r +(P
2

- e ) ]
- r T

E Q . 7+ e
c p

In taking this final step, we have assumed that the square root of an
expected value is the same as the expected value of the square root. This is
not strictly correct, but it can be shown that the difference between the two
is insignificant when the variance itself is relatively constant, which is the
case in practice.

Equation 7shows that the fair value of the realized future volatility is
related to the value P p̂ of series of strangles, which are the natural instru¬
ments for obtaining pure volatility exposure.

From Equation 2, the fair value of the RV forward contract is given by

1

:(Z7-̂ )) =10o||[e-̂ (̂(r-5)r-H(P,p +e
2

- e ) ) ]
- r T- r T

- K e

The choice of the options portfolio and its market price will in effect deter¬
mine the price for the RV forward contract. More options will achieve bet¬
ter replication but may increase transaction costs.
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An Example of aFair
Va l u e C a l c u l a t i o n

Assume the current index price 5is 100, the continuously compounded
annual interest rate ris 5% and the continuously compounded annual divi¬
dend yield 5is 2%. In addition, suppose that all options trade with implied
volatilities equal to 15%. We want to calculate the forward 3-month daily
realized volatility for this index. Since the implied volatility is flat, with no
term or skew structure, we would intuitively expect that the fair value of
realized volatility should also be equal to 15%.

Let us confirm this by replicating the quadratic piece of the logarithmic
payoff in Equation 4using aportfolio of out-of-the-money call and put
options whose strikes range from 80% of the spot to 120% of the spot, in
5% intervals. We use equal weights for all options, except for the at the-
money call and put options for which we use half that weight. Table 22
below shows the composition of this portfolio.

T a b l e 2 2

APortfolio of European Call and Put Options
Used for Calculating the Fair Value of Realized Volatility

No. of Options
[10-*!

Pos i t i on Va lue

[10-̂ 1Option Type S t r i k e Security Value

cal l 5 120 0 .028 0.141

c a l l 5 I I S 0 .128 0 .638

cal l 5 0.471 2 .356n o

cal l 5 1.403 7 .017105

cal l 2 . 5 1 0 0 3 .367 8 .418

2 .617 6 .5442 .5 1 0 0pu t

0 .903 4 .5155 95pu t

1.0385 9 0 0.208pu t

0 .028 0 .1425 85pu t

0 .002 0 .0105 8 0pu t

30 .820To t a l Va l u e :

Pep
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From Equation 7we find <Zj> =15.63%. We can improve the estimate of
the realized volatility fair value by using an options portfolio with weights
which also fit the higher order pieces of the logarithmic payoff. Table 23
shows the composition of this new portfolio.

Tab le 23

Improving the Fair Value Calculation
by Adjusting the Option Weights

No. of Options
[lO"*]

Posi t ion Value

[10"']
Option Type S t r i k e Security Value

cal l 3 . 0 1 2 0 0 . 0 2 8 0 .084

c a l l 3 . 5 115 0 .128 0.447

c a l l 4 . 0 110 0.471 1.885

c a l l 4.5 105 1.403 6.315

c a l l 2.5 100 3 .367 8.418

2.5pu t 1 0 0 2 .617 6 .544

5 .5 9 5 0 .903pu t 4 .967

6 .0pu t 9 0 0 .208 1 . 2 4 6

6.5 8 5 0 .028pu t 0.185

7 .0 8 0 0 .002pu t 0.014

To t a l Va l u e : 30 .105
P

c p

Using this table our improved estimate for the fair value of realized volatil¬
ity is <I.j-> =15.45%. To improve the fair value estimation even further
we must use more strikes. Using strikes evenly spaced in 2% intervals and
adjusted weights, the estimation of fair value improves to <I,j-> =15.03%.
In the limit of infinitely many strikes where the distance between the strikes
approaches zero, the fair value of realized volatility will converge to 15%.
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Assume that instead of the constant volatility of 15% in our previous exam¬
ple the implied volatility changes by 2% for every 5% change in the strike
level, with higher strikes having lower implied volatilities. The composi¬
tion of the options portfolio remains the same as before. However, since the
present value of the portfolio is affected by the skew our estimate for
the fair value of realized volatility will be different. The results are shown
i n Ta b l e 2 4 :

Effect of the Volatility
Skew on Fair Value

Tab le 24

Estimating the Realized Volatility Forward Value
in the Presence of the Implied Volatility Skew

Opt ion
Type

Impl ied
Volat i l i ty(%)Weight S t r i k e SecurityValue Pos i t ion Va lue

cal l 3 . 0 0 .000 0 .000120 7 .0

cal l 3 . 5 115 9 .0 0 .002 0 .008

c a l l 4 . 0 110 11.0 0 .137 0 .548

cal l 4 . 5 105 13.0 1.061 4 .776

2 .5 15.0 3 .367 8 .418c a l l 1 0 0

2 .5 15.0 2 .617 6 .544100p u t

5 .5 9 5 17.0 1.198 6.591pu t

6 .0 9 0 19.0 0 . 5 2 0 3 . 11 9p u t

6 .5 0 .217 1.4098 5 21 .0p u t

0 .087 0 . 6 117 .0 8 0 23 .0p u t

3 2 . 0 2 4To t a l Va l u e :

(Pep X10̂ )

The fair value calculated from this table is <Lp >=15.94%. If we use
strikes in 2% intervals we find abetter estimate of < > = 1 5 . 4 5 % . T h i s

value is larger than the at-the-money implied volatility of 15%. The reason
is that the value of the portfolio varies non-linearly with respect to the over¬
all changes of implied volatilities of its component options.

NOTE: This piece was prepared by Emanuel Derman, Michael Kamal, Iraj
Kani, and Joe Zou, Quantitative Strategies, Goldman, Sachs &Co.
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