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SUMMARY

Investors in equity options experience two problems that compound
each other. In contrast to fixed-income and currency markets, there
are thousands of underlyers and tens of thousands of options, and
each underlyer can have a potentially large volatility skew. How can
an options investor gauge which option provides the best relative
value?

In this paper, we make use of a method for estimating the fair volatility
smile of any equity underlyer from information embedded in the time
series of that underlyer’s historical returns. We can then compute the
relative richness or cheapness of any particular strike and expiration
by examining the option’s Strike-Adjusted Spread, or SAS, the differ-
ence between its market implied volatility and its estimated histori-
cally-fair volatility.

We obtain fair volatility smiles by estimating the appropriate risk-neu-
tral distribution for valuing options on any equity underlyer from that
underlyer’s historical returns. The distribution includes the effect of
both past price jumps and past shifts in realized volatility. Using this
distribution, we can estimate the fair volatility skews for illiquid or
thinly-traded single-stock and basket options. We can also forecast
changes in the skew from changes in a single options price.

___________________
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THE RICHNESS AND
CHEAPNESS OF
OPTIONS

The equities world is a mass of data. Surrounded by fluctuating share
prices, dividend yields, earnings forecasts, P/E ratios, and hosts of
more sophisticated measures, analysts, investors are in need of some
gauge or metric with which to compare the relative attractiveness of
different stocks. Into the breach, in newsletters, books and websites,
step countless economists, technical analysts, fundamental analysts,
chartists, wave theorists, alpha-maximizers and other optimists, hop-
ing to impose order and rationality, to tell you what to buy and sell.

Investors in equity options face an equally difficult task, with less
resources. For each underlying stock, basket or index, many standard
strikes and expirations are available. For a given underlyer, each strike
and expiration trades at its own implied volatility, all of which,
together, comprise an implied volatility surface [Derman, Kani and
Zou, (1996)] that moves continually. Each underlyer has its own idio-
syncratic surface. In addition, underlyers can be grouped to create bas-
kets, new underlyers with their own (never before observed) volatility
surface.

For a given stock or index, how is an investor to know which strike and
expiration provides the best value? What metric can options investors
use to gauge their estimated excess return? What is the appropriate
volatility surface for an illiquid basket? Help is sparse.

Current vs. Past
Implied Volatilities

The most common gauge of options value has been the spread between
current and past implied volatilities. This is the metric of options spec-
ulators, who hope to get in at historically low volatilities, hedge for a
while, and get out high. When all options of a given expiration trade at
the same implied volatility, it is not too hard to compare changes in
implied volatility over time. Since the advent of the volatility smile,
however, it has become harder to have a clear opinion of the relative
richness of two complex volatility surfaces.

Implied vs. Historical
Volatilities

A second gauge is the spread between current implied and past real-
ized volatilities. This is the metric of options replicators, who hope to
lock in the difference between future realized and current implied vola-
tilities by delta-hedging their options to expiration. This comparison,
becomes imprecise in the presence of a volatility skew, when there are
a range of implied volatilities, varying by strike, that must be com-
pared with only a single historical realized volatility.
1



Strike-Adjusted
Spread
(SAS)

The historical time series of a stock’s returns contains much useful
information. In this paper we try to come to the practical aid of options
investors by estimating the fair value of options from the historical
returns of their underlyers. This method for options pricing has been
extensively developed by Stutzer (1996), and also employed by Der-
man, Kamal, Kani & Zou (1997), and Stutzer and Chowdhury (1999).
Here we apply it in the practical situations that occur on an equity
derivatives trading desk, where options on many different underlyers
must be valued daily.

This method leads us to the notion of Strike-Adjusted Spread, or SAS, a
natural one-dimensional metric with which to rank the relative value
of all standard equity options, irrespective of their particular strike or
expiration. We propose to use SAS in roughly the same way that stock
investors use “alpha” and mortgage investors use OAS (option-adjusted
spread). To be specific, the SAS of an option is the spread between the
current market implied volatility of that option and our model’s esti-
mate of its historically appropriate volatility. Our estimate includes
both the effect of past price jumps and the influences of changes in vol-
atility and correlations for basket options.

Theoretically, the historically appropriate implied volatility for a given
option is determined by the cost of replicating that option throughout
its lifetime. Not only is this replication cost difficult and time-consum-
ing to simulate, but, in our experience, the hedging errors due to inac-
curate volatility forecasting and infrequent hedging make the resulting
statistics inconclusive. Instead, our method for obtaining the appropri-
ate implied volatility of a stock option involves the estimation of an
appropriate risk-neutral distribution from the past realized return dis-
tribution of the stock. We will explain the method in more detail below,
and describe its application to SAS. The same technique can be used to
mark and hedge illiquid equity options whose market prices are
unknown.

The strike-adjusted spread of an option depends on both its strike K
and time to expiration T, and can be written more precisely as

. SAS can be thought of as an extension of the commonly
quoted implied-to-historical volatility spread, which is unique only in
the absence of skew. In non-skewed worlds, both spreads become iden-
tical.

In brief, the SAS of a stock option is calculated as follows.

1. First, choosing some historically relevant period, we obtain the dis-
tribution of stock returns over time T. This empirical return distri-
bution characterizes the past behavior of the stock.

SAS K T,( )
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2. Option theory dictates that options are valued as the discounted
expected value of the option payoff over the risk-neutral distribu-
tion. We do not know the appropriate risk-neutral distribution.
However, we use the empirical return distribution as a statistical
prior to provide us with an estimate of the risk-neutral distribution
by minimizing the entropy1 associated with the difference between
the distributions, subject to ensuring that the risk-neutral distribu-
tion is consistent with the current forward price of the stock. We call
this risk-neutral distribution2 obtained in this way the risk-neu-
tralized historical distribution, or RNHD.

3. We then use the RNHD to calculate the expected values of standard
options of all strikes for expiration T, and convert these values to
Black-Scholes implied volatilities. We denote the Black-Scholes
implied volatility of an option whose price is computed from this dis-
tribution as . This is our estimated fair option volatility.

4. For an option with strike K and expiration T, whose market implied
volatility is , the strike-adjusted spread in volatility is
defined as

This spread is a measure of the current richness3 of the option
based on historical returns.

ATM Strike-Adjusted
Spread

The volatility skew, the relative gap between at-the-money and out-of-
the-money implied volatilities for a given expiration, is more stable
than the absolute level of at-the-money implied volatilities. Often,
therefore, irrespective of historical return distributions, the current
level of at-the-money implied volatility is the most believable estimate
of future volatility. It is likely that historical distributions tell us more
about the higher moments of future distributions than it does about
their standard deviation.

Therefore, we will often use a modified version of SAS for which the
risk-neutralized historical distribution is further constrained to repro-

1. As we explain later, markets in equilibrium are characterized by maxi-
mum uncertainty or minimal information, and minimal entropy change
is an expression of minimal information.

2. Stutzer (1996) refers to this as the “canonical distribution.” and this
method of options valuation as “canonical valuation.”

3. A positive SAS connotes richness only for standard options whose value
is a monotonically increasing function of volatility. Exotic options may
have values that decrease as volatility increases.

ΣH

Σ K T,( )

SAS K T,( ) Σ K T,( ) ΣH K T,( )–=
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duce the current market value of at-the-money options. We call this
(additionally constrained) distribution the at-the-money adjusted,
risk-neutralized historical distribution, or RNHDATM. The
strike-adjusted spread computed using this distribution, denoted

, is a measure of the relative value of different strikes,

assuming that, by definition, at-the-money-forward implied volatility
is fair.

We propose using to rank options on the same under-

lyer, in order to determine which strikes provide the best value by his-
torical standards. More radically, we can also use the same measure to
compare options of different underlyers.

In the remainder of this paper, we flesh out these concepts. The next
section explains the relation between options prices and implied distri-
butions. Thereafter, we compare implied distributions to historical
return distributions. We then explain that markets in equilibrium are
characterized by maximal investor uncertainty, and, introducing the
notion of entropy, show that we can obtain an estimate of the risk-neu-
tral distribution from the historical distribution by minimizing the
entropy difference between the distributions. The main body of the
paper then develops several applications of the risk-neutralized histor-
ical distribution, including SAS. After some concluding remarks, we
provide several mathematical appendices.

SASATM K T,( )

SASATM K T,( )
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OPTIONS PRICES AND
IMPLIED DISTRIBUTIONS

According to the theory of options valuation, stock options prices con-
tain information about the market’s collective expectation of the stock’s
future volatility and its return distribution. If no riskless arbitrage can
occur, there exists a risk-neutral return probability distribution Q such
that the value V of an option on a stock with price S at time t is given
by the discounted expected value of the option’s payoff, written as

(EQ 1)

where r is the risk-free interest rate and EQ[ | ] denotes the expected
value of the future payoff at time T, given that the stock price at time t
is S.

In the Black-Scholes theory, the risk-neutral implied probability distri-
bution Q is the lognormal density function with a specified volatility. In
implied tree models4, Q is skewed relative to the Black-Scholes density,
and can be estimated at any time from a set of traded European option
prices. Figure 1a illustrates an implied volatility skew for S&P 500
index options, typically about five volatility points for a 10% change in
strike level; Figure 1b shows the correspondingly skewed risk-neutral
implied distribution Q. Whenever the shape of the skew changes, there
is a corresponding change in the distribution. Knowing Q, you can cal-
culate the fair value of any standard European option.

4.  See for example, Derman, Kani, and Zou (1996).

V S t,( ) e r T t–( )– EQ Option Payoff at T | S t,[ ]=

FIGURE 1. (a) The three-month implied volatility skew for S&P 500 index
options on 3/10/99. (b) Q, the corresponding risk-neutral implied
probability distribution of returns. We assume a riskless interest rate of 5%.
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STOCK RETURNS AND
HISTORICAL
DISTRIBUTIONS

Stock options’ prices determine the implied distribution of stock
returns. Independently, we can also observe the actual distribution of
stock. Consider the historical series Si of daily closing prices of a stock
or stock index. We can construct the rolling series of continuously com-
pounded stock returns Ri from day i for a subsequent period of N trad-
ing days by calculating

(EQ 2)

Figure 2 shows the distribution of actual three-month S&P 500 returns
for periods both before and since the 1987 stock market crash, where
the latter period includes the crash itself.

The pre-crash return distribution is approximately symmetric and nor-
mally distributed. In contrast, the post-crash distribution (1987-crash
data included) has a higher mean return and a lower standard devia-
tion, as well as an asymmetric secondary peak at its lower end.

There is a rough similarity in shape between the implied distribution
of Figure 1b, whose mean reflects the risk-free rate at which its options
were priced, and the historical distribution of Figure 2b, whose (differ-
ent) mean is the average historical return over the post-crash period.
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FIGURE 2. Three-month, S&P 500 index, observed return distributions.
(a) Pre-1987 crash (Jan. 1970 to Jan. 1987); (b) Post-1987 crash (June 1987
to June 1999)
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Options theory does not enforce an unambiguous link between histori-
cal and implied distributions. Nevertheless, historical distributions,
suitably interpreted, can provide plausible information about fair
options prices. Our aim in this paper is to develop a heuristic but logi-
cal link between the two distributions, utilizing the notions of market
equilibrium and uncertainty.
7



MAXIMAL
UNCERTAINTY AND
MARKET EQUILIBRIUM

Markets are supposed to settle into equilibrium when supply equals
demand, when there are equal numbers of buyers and sellers at some
price. In an efficient market, the potential buyers of a stock must think
the stock is cheap, and potential sellers must think it rich. This differ-
ence of opinion means that, in equilibrium, the distribution of expected
returns displays great uncertainty.

How do we quantify this simple intuition that equilibrium involves
uncertainty in the expected return distribution?

Entropy as a Measure
of Uncertainty

The probability of a single event is a measure of the uncertainty of its
occurrence. Entropy is a mathematical function that measures the
uncertainty of a probability distribution5. The entropy of a random
variable R, whose ith occurrence in the distribution has probability pi,
is defined to be

(EQ 3)

Since any probability pi is less than or equal to 1, the entropy is always
positive. If the distribution R collapses to one certain single event j,
whose probability with all other , then H(R) = 0. There-

fore, certainty corresponds to the lowest possible entropy. You can also
show that the entropy takes its maximum value, log(n), when

for all i, that is, when all outcomes have an equal chance

and uncertainty reigns. This is consistent with the notion that maxi-
mum entropy corresponds to maximum uncertainty and minimum
information.

H(R) is the entropy of a single distribution R. We can also define the
relative entropy S(P,Q) between an initial distribution P and a subse-
quent distribution Q. S measures the decrease in entropy (or the
increase in information) between the initial distribution P and the final
distribution Q, and is given by

(EQ 4)

In Appendix A we show that the relative entropy is always non-nega-
tive, and is zero if and only if the two distributions P and Q are identi-

5.  In Appendix A we explain the link between entropy and information.

H R( ) pi pilog
i 1=

n

∑–=

p j 1= pi 0=

pi 1 n⁄=

S P Q,( ) EQ Q Plog–log[ ] Q x( ) Q x( )
P x( )
------------- 

 log
x
∑= =
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cal. This agrees with our intuition that any change in a probability
distribution conveys some new information. The relative entropy
between two distributions measures the information gain (or reduction
in uncertainty) after a distribution change. Thus, minimum relative
entropy corresponds to the least increase in information.

The Risk-Neutralized
Historical Distribution

Consider a stock option with time to expiration T on a stock whose spot
price is . To value the option, we need to average the option payoff

over the risk-neutral probability density . In theory, Q( )

is found by solving the differential equation that constrains the instan-
taneously hedged option to earn the instantaneously riskless return. In
the Black-Scholes world, a stock’s future probability distribution is
assumed to be lognormal, and consequently, though not obviously, Q( )
itself is a lognormally distributed probability density, and its options
prices have no volatility skew.

This theoretical lack of skew conflicts with the data from markets,
where stocks and indexes that have sufficiently liquid out-of-the-
money strikes display clear, and often large, skews. How can we esti-
mate a suitable risk-neutral probability density that is more consistent
with market skews than the Black-Scholes lognormal distribution?

It is natural to turn for insight to the distribution of actual returns,
. The two distributions Q( ) and P( ) cannot be strictly

identical, because the expected value of the stock price under the risk-
neutral distribution Q( ) at any time must be the stock’s current for-
ward price, as determined by the current risk-free rate, whereas the
expected value of the stock price under P( ) is the average historical for-
ward price, which bears no relation to current risk-free rates.

The rigorous way to obtain Q( ) from the past evolution of stock prices
is to obtain fair historical options prices for a variety of strikes by sim-
ulating the instantaneously riskless hedging strategy over the life of
these options, and to then infer the risk-neutral density that matches
these prices. This requires a detailed knowledge of every past instant
of the stock price evolution, at all times and market levels, and is time-
consuming, difficult, error-prone and ultimately impractical.

Instead, we will estimate the current risk-neutral return distribution
Q( ) for a stock from its historical distribution P( ) by assuming that the
latter is a plausible estimate for the former, and then requiring that
the relative entropy S(P,Q) between the distributions is minimized. We
impose this criterion in order to avoid any spurious increase in appar-
ent information in creating the risk-neutral distribution from the his-
torical distribution. We perform the minimization subject to the risk-

S0

Q S0 0 ST T,;,( )

P S0 0 ST T,;,( )
9



neutrality constraint, that is, the condition that the expected value of
the stock price under the risk-neutral distribution Q( ) is consistent
with the stock’s current forward price6. We call Q( ) found in this way
the risk-neutralized historical distribution7, or the RNHD. It is
our plausible guess for the distribution to use in options valuation,
given our knowledge of the past. Our knowledge of a stock’s historical
volatility, the second moment of its distribution, is often used to esti-
mate options values using the Black-Scholes formula. Here we go one
step further by using the entire historical return distribution. A
description of the general approach outlined here can also be found in
Stutzer (1996).

It is possible to impose further constraints on Q( ). If you believe that
the current at-the-money volatility for some particular stock is fair, you
can constrain the distribution Q( ) to match not only the stock forward
price, but also to match the current at-the-money implied volatility. We
denote this additionally constrained distribution by Qatm( ), and refer
to it as the at-the-money-consistent, risk-neutralized historical
distribution, or RNHDATM. It can be used to compare the relative
values of options with different strikes on one underlyer, assuming
that at-the-money volatility is fair.

Appendix B states the minimization condition on Q( ) in mathematical
terms. In Appendix C we present a model of an Arrow-Debreu economy
and show that it is possible to obtain the risk-neutralized historical
distribution by optimally allocating investors’ wealth under an equilib-
rium condition with an exponential utility function.

Having obtained our estimate of the risk-neutral distribution, we can
estimate the fair price for any standard option as the discounted
expected value of its payoff at expiration. We then extract the fair
implied volatility as the volatility which equates the Black-Scholes
option price to the estimated fair price. This procedure can be repeated
for all strikes and maturities to yield an entire fair implied volatility
surface.

6. Several authors have studied the relevance of entropy in financial eco-
nomics and derivatives pricing. See Stutzer (1996), Derman et al.
(1997), Buchen and Kelly (1996), and Gulko (1996).

7. For a normal historical distribution of simply compounded returns, one
can show that the risk-neutralized historical distribution obtained by
entropy minimization is equivalent to a translation of the historical dis-
tribution to re-center it at the appropriate risk-neutral rate, without
altering its shape. This translation invariance of the shape in moving
from the historical to the risk-neutral distribution does not hold in gen-
eral.
10



APPLICATIONS OF
THE RISK-NEUTRALIZED
HISTORICAL
DISTRIBUTION

The RNHD contains information which can be used to estimate the
value of illiquid options whose prices are unobtainable, as well as to
compare the relative value of options with known market prices. We
present several representative examples below.

Is The Index Implied
Volatility Skew Fair?

Since the 1987 crash, equity index markets have displayed a pro-
nounced, persistent implied volatility skew. Is this skew fair? Are the
options prices determined by the skew justified by historical returns?
Figure 3a shows the risk-neutralized three-month S&P 500 return dis-
tribution for the pre-crash period corresponding to Figure 2a, con-
structed using our method of relative entropy minimization. Figure 3b
shows the same distribution corresponding to the post-crash era of Fig-
ure 2b. The post-crash distribution has a substantially longer tail at
low returns than the pre-crash distribution.

Skew slopes seem more stable than volatility levels. Therefore, we will
focus here on the relation between the implied volatilities of different
strikes that follows from these distributions, and pay little attention to
the prevailing absolute level of implied volatility. We estimate the fair
volatility skew by using the distributions of Figure 3 to calculate
options prices, and by then converting these options prices to Black-
Scholes implied volatilities.

The results are shown in Figure 4. The pre-crash skew is approxi-
mately flat, but the post-crash volatilities increase for low strikes, with
a slope similar to actual index skews in stable markets. The observed
degree of skew, about five to six volatility points per 10% change in
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FIGURE 3. The three-month risk-neutral distribution of S&P 500 returns
constructed from the empirical distributions of Figure 2 using a 6% riskless
rate. (a) Pre-crash (b) Post-crash.
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strike level, seems approximately fair in the light of post-crash market
behavior. Our fair post-crash skew is bilinear and more convex than
the recent skew of Figure 1a, but index markets do sometimes display
skews like that of Figure 4.

We find that estimated one-month skews tend to resemble a smile
more than a skew: our fair implied volatilities of both out-of-the-money
calls and puts for one-month expirations exceed at-the-money volatili-
ties. Short-dated index options often display this type of behavior. We
have applied our method to several other major stock indexes and
found that their fair volatility skews are roughly consistent with
observed market skews during normal market periods, as shown in
Table 1.

FIGURE 4. The fair implied volatility skew for three-month S&P 500 options as
calculated from the risk-neutralized historical distributions of Figure 3.

Strike Level

V
ol

at
ili

ty
 (%

)

90 95 100 105 110

10
12

14
16

18
20

22
24

post-crash
pre-crash

TABLE 1. Comparison of actual skews with estimated fair volatility skews for
three major indexes. The spread shown is the difference in volatility points
between a 25-delta put and a 25-delta call.

Index Normala
Spread

a. Average during normal market conditions (excluding the periods of
extreme volatility in late October 1997 and August-September 1998).

Extremeb

Spread

b. Average during periods of extreme market volatility.

Fairc

Spread

c. Based on historical returns over the period June 1987 to June 1999.

SPX 4-7% 14% 6.0%

DAX 3-6% 10% 3.5%

FTSE 2-6%. 10% 4.0%
12



Strike-Adjusted
Spread As A Measure
Of Options Value

The Strike-Adjusted Spread for an option with strike K and expiration
T is defined as

where is the Black-Scholes market implied volatility of the
option, and is the implied volatility computed from the

RNHD over some chosen relevant period. SASATM is constrained to be
consistent with the market’s at-the-money-forward implied volatility
for that particular underlyer and expiration, so that

, where is the forward value of the

underlyer at time T. This spread is a measure of the current richness,
relative to history, of an option, assuming that at-the-money-forward
options, usually the most liquid, are fairly valued.

Figure 5a shows a plot of fair and market skews for Sept. 1999 S&P
500 options, on May 18, 1999, using the twelve years of historical
returns from May 1987 to May 1999 to calculate . Figure 5b

shows the SASATM for the same options. For out-of-the-money puts, the
entropy-adjusted volatilities slightly exceed the market volatilities,
which suggests that out-of-the-money puts are slightly cheap. Con-
versely, out-of-the-money calls seem rich.

Figure 6 shows the same plots based on a historical return distribution
taken from May 1988 through May 1999, thereby excluding the 1987
global stock market crash. In this case, out-of-the-money puts seem
much too rich, while out-of-the-money calls are slightly cheap.

In our view, SAS is a quantitative tool for ranking the relative value of
options, but this does not absolve the user from choosing the historical
period relevant to the computation of the risk-neutralized distribution.
There is no escaping the judgement necessary to decide which past
period is most relevant to the current market from both a fundamental
and psychological point of view.

In Figure 7, we plot the skews and SASATM for the same set of options
used in Figure 5 and 6, but evaluated one month later. Although at-
the-money volatility has now fallen from 25.5% to 21%, the size of
skews has remained relatively stable. Roughly irrespective of which
historical distribution was used, the strike-adjusted spreads have
changed so that out-of-the-money puts have become about two SAS
points cheaper, whereas the SAS of out-of-the-money calls has changed
less. If you had thought the relevant historical distribution was the
crash-inclusive one of Figure 5, and had bought cheap puts, you would

SASATM K T,( ) Σ K T,( ) ΣH K T,( )–=

Σ K T,( )
ΣH K T,( )

SASATM SF T[ ] T,( ) 0= SF T[ ]

ΣH K T,( )
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FIGURE 5. (a) Fair and market skews for S&P 500 index options on May 18,
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The options considered expire on September 17, 1999. Both fair and
market implied volatilities are constrained to match at the money,
forward. The RNHD is constructed using returns from May 1987 to May
1999, including the 1987 crash.
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have lost SAS. If, on the other hand, you had thought that the relevant
distribution was the crash-exclusive one of Figure 6, and sold rich puts,
you would have gained several points of SAS

.

Valuing Options on
Baskets of Stocks

The value of an OTC option on a custom basket of stocks is difficult to
estimate, since there is no liquid options market from which to extract
pricing information. Consider an investor interested in buying a collar
on a basket of bank stocks he owns. Suppose he wants to buy a 10%
out-of-the-money put and finance it by selling a 10% out-of-the-money
call on the basket. What volatility spread or skew should one use to
price the collar?

One of the problems in valuing basket options is that correlations
among component stocks vary widely with the stock levels. When there
is a sharp downward market move, the correlations tend to increase.
Consequently, a basket may exhibit large volatility skews even if each
component stock shows little skewness in its distribution. Thus OTM
puts on a basket should, in general, trade at a premium because the
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FIGURE 7. Re-evaluated SASATM on June 21, 1999 for September 17, 1999
S&P 500 options. The top two figures correspond to the crash-inclusive
distributions of Figure 5; the bottom two correspond to the crash-exclusive
distributions of Figure 6.
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increasing correlations in a down market makes the basket return dis-
tribution skewed to the lower end. How do we model this effect? We uti-
lize the information embedded in the historical time series of the
basket.

To be specific, we consider an example in which the basket consists of
an equal number of shares of five bank stocks: J.P. Morgan, Wells
Fargo, Bank One, Bank America, and Chase. We first retrieve the his-
torical data for all five stocks and aggregate them to form the time
series of basket returns and their historical distribution. We use histor-
ical data from June 1987 to June 1999 in this example. By minimizing
the relative entropy, we convert the historical distribution into an esti-
mate of the risk neutral distribution. Figure 8 displays the estimated
three-month implied volatility skew for the bank basket calculated
from the risk-neutral distribution. The volatility spread between the
10% OTM call and the 10% OTM put is approximately seven volatility
points. In the absence of any market information on the price of options
on this basket with a variety of strikes, this seems a useful method of
obtaining some sense of the appropriate skew. We note that in using
this approach, we managed to bypass the problem of predicting future
correlations between the component stocks in the basket, a major hur-
dle in valuing basket options. In this particular example, the three-
month correlations between the stocks in the basket almost doubled
during the Fall of 1998 following the Russian currency devaluation.
Our approach takes into account the changes in correlations embedded
in the basket time series.

We have also applied our model to options on the BKX index (a basket
of 24 large U.S. banks with options listed on the Philadelphia
exchange). We constructed a basket with the same weighting as the
BKX index and calculated both its empirical return distribution and its
estimated risk-neutral distribution. The resulting three-month volatil-
ity skew is close to the skew observed in the listed options market,
even when the at-the-money volatility levels differ. This further dem-
onstrates the reasonableness of our approach.
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Forecasting The
Shape of The Skew
From A Change In A
Single Option Price

Market makers in index options keep a steady eye on the skew. Sup-
pose that for a given expiration there are n options, with strikes Ki and

known implied volatilities , that characterize the skew. Suppose

that implied volatilities and the skew have been relatively stable; then,
one of the option’s implied volatilities suddenly changes in response to
new market sentiments or pressures. How should the market maker
adjust the quotes for all other options given the sudden change in the
price of one? This question is particularly relevant for automated elec-
tronic market-making systems. The maximum entropy method pro-
vides a possible answer.

We start with the implied distribution8 computed from the known
implied volatilities . Now suppose the implied volatility of one

option with strike level has changed to a new value . We

would like to regard this one move in implied volatility as the visible
tip of the iceberg, the observable segment of a new skew that will soon
manifest. To identify this new skew, we seek to find the new risk-neu-

tral distribution that is consistent with the single new

and known implied volatility, while minimizing the entropy change

FIGURE 8. The estimated fair three-month implied volatility skew for the
basket of five bank stocks listed in the text, estimated from the risk-
neutralized historical distribution using returns from June 1987 to June
1999.
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between the old and new distributions. Once the new risk-neutral dis-
tribution is obtained, we can update the quotes for the rest of the
options by valuing them off the new distribution.

Here are some examples. Consider a hypothetical index whose current
value is 100. Suppose the three-month, at-the-money volatility is 24%,
and the three-month skew is linear in strike with a slope correspond-
ing to a two-volatility-point increase per ten-strike-point decline, as
displayed in Figure 10a. The heavy X in the figure shows the one newly
observed implied volatility, assumed to rise of four implied volatility
points, from 26% to 30%, for the 90-strike put. Figure 10b shows the
change in the risk-neutral implied distribution obtained by minimizing
the change in distributional entropy consistent with one new implied
volatility. The increase in 90-strike implied volatility has led to a sig-
nificant hump in the risk-neutral distribution below the 90 level.
Finally, Figure 10c shows both the old and new skews, the latter com-
puted from the new risk-neutral distribution. The new estimated skew
differs from the old in a non-obvious way: it has not shifted parallel to
accommodate the one new item of information, but instead suggests
that the skew slope will increase as a response to this shock.

Figure 9 shows several more examples where the volatility at one par-
ticular strike is shocked. Note that shifts in at-the-money volatility
seem to lead to parallel shifts in the skew, whereas shifts in out-of-the-
money volatility lead to changes in slope as well as level.

End-of-Day Mark To
Market

At the end of a trading day, volatility traders need to re-mark all of
their options positions. Often, only the liquid strikes have traded close
to the end of the day, and, if the last traded option has undergone a sig-
nificant change in implied volatility, one needs to estimate the appro-
priate skew for the remaining, less liquid options, based on the new
information. Our model of minimizing the relative entropy provides a
ready solution to the problem. In the examples shown in Figure 9, one
could plausibly mark to market the rest of options using the solid lines
as our best guesses for closing volatilities.

Filling Gaps In
Investors’ Market
Views

Risk arbitrageurs, speculators, and other situation-driven investors
often have very specific, but not necessarily complete, views on the
market. For instance, risk arbitrageurs taking a position in the stocks
of two companies involved in a merger or acquisition may estimate a
90% probability that the deal will be completed and the stock will move
18



above a certain target level within three months. Suppose that they
would like to take positions in stock and options to implement this
belief.

Although the arbitrageurs have a firm opinion about only one segment
of the probability distribution, a more complete distribution can be
helpful in constructing strategies and determining reasonable prices.
How can we fill the gap and extract the arbitrageurs’ market distribu-
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FIGURE 9. The shifts in skew that result from minimizing the entropy change
of the new risk-neutral distribution to accommodate a shift in one implied
volatility, as shown by the arrows below.

FIGURE 10. (a) The initial skew (dashed line) and the one newly observed implied volatility (X).
(b) The initial (dashed line) risk-neutral distribution and the new (solid line) risk-neutral
distribution. (c) The new skew (solid line), with greater negative slope.
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tion based on their specific prediction that the market has a 90%
chance of moving above the target level? One good starting point is to
use the option implied distribution, P, as a prior distribution, and then
find a new distribution, Q, that satisfies the arbitrageur’s 90% proba-
bility estimate

where ST is the arbitrageur’s target stock price. Again the model of
minimizing the relative entropy provides a natural solution to this
problem.

Q S T S0 0,;,( ) Sd

ST

∞

∫ 0.9=
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CONCLUDING
REMARKS

Investors in equity options have two problems that compound each
other: the many thousands of equity underlyers and the presence of a
unique volatility skew for each of them. For many thinly-traded single
stock and basket options, it is difficult or impossible to get adequate
information on the market skew.

In this paper, we have employed a systematic, semi-empirical method
for estimating the risk-neutral distribution of any underlyer, stock or
basket, whose historical returns are available. This method, originally
used by Stutzer (1996), involves the determination of a new, risk-neu-
tralized historical distribution (RNHD) for an underlyer by minimizing
the relative entropy between the historical distribution and the risk-
neutral distribution.

Using the RNHD, we can compute the estimated fair implied volatili-
ties of options of any strike and expiration. We can apply this method
to illiquid or thinly-traded derivatives where market prices are
unavailable.

We have defined a new metric, the strike-adjusted spread, or SAS, for
gauging the value of options whose prices are known. SAS is the differ-
ence between an option’s implied volatility and its fair volatility as
estimated using the RNHD. This spread represents the richness in vol-
atility points of an option, compared to the history of its underlyer.
Most often, in liquid markets, we calibrate the SAS to be consistent
with current at-the-money volatility, so that it becomes a measure of
skew richness as compared with history. The SAS ranking cannot be
used blindly; it depends on the user’s selection of the historical period
most relevant to the current market.

There are many other applications of the method of minimal relative
entropy we have illustrated in this paper. One may choose as a prior an
existing options’ implied distribution, or any other distribution reflect-
ing subjective market views. We hope that this practical method and
its extensions will help investors make more rational decisions about
value in volatility markets.
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APPENDIX A:
INFORMATION AND
ENTROPY

Probability measures the uncertainty about the occurrence of a single
random event. For a given random variable X, what can we deduce
from a single observation that ?

Information Information9 changes our view of the world. It seems obvious that the
amount of information conveyed by the observation that should
depend on how likely this event was previously assumed to be. If a
stock was expected to go up the next day by everyone, and it actually
went down, the surprising outcome is certainly more informative than
the expected outcome. We want to quantify the notion of events provid-
ing information.

We seek a function that can represent the information provided
by the occurrence of the event whose probability was assumed
to be p. We require that be a non-negative and decreasing func-
tion of p; our intuition says that I( ) is non-negative because the occur-
rence of the event must provide some information; similarly, I( ) must
decrease with increasing p because the more likely we thought the
event was, the less information its occurrence provides.

Consider X and Y to be two independent random variables, and assume
that

(A 1)

Since X and Y are independent, we have the joint probability

(A 2)

When both independent events, and , occur, the associ-
ated information I( ) of each must add to the total, so that

(A 3)

Differentiate Equation 3 first with respect to p and similarly with
respect to q to obtain

(A 4)

Dividing the first equation by the second, we obtain

X x=

9.  See Kullback, S. (1967), and Cover et al. (1991).

X x=

I p( )
X x=

I p( )

P X x=( ) p and P Y y=( ) q= =

P X x Y y=;=( ) pq=

X x= Y y=

I pq( ) I p( ) I q( )+=

q
pq( )∂
∂ I pq( )

p∂
∂ I p( )=

p
pq( )∂
∂ I pq( )

q∂
∂ I q( )=
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or

(A 5)

Since q and p are independent variables, each term in Equation 5 must
be a constant, denoted , so that

Since an event with probability q = 1 provides no information, .
Since , and since we required that I( ) be a non-negative and
decreasing function of q, the constant c must be positive. From now on
we set , which defines the conventional size of a unit of informa-
tion. The information provided by the occurrence of an event whose
probability was p is therefore given by

(A 6)

Entropy The probability assigned to a single event is a measure of the uncer-
tainty of its occurrence. The entropy of a random variable R, whose ith

occurrence in the distribution has probability pi, is defined to be the
expected value of the information from the occurrence of an event in
the distribution, namely

(A 7)

Since any probability pi is less than or equal to 1, the entropy is always
positive.

A large expected value of information means that the distribution was
broad, with a wide spread of probabilities. A small expected informa-
tion means the distribution was relatively narrow, so that not much
information can be gained from the occurrence of an expected event.
Qualitatively, therefore, you can see that H represents the uncertainty
in the distribution: large (small) average information H corresponds to

q
p
---- p∂

∂ I p( )

q∂
∂ I q( )

-------------------=

q
q∂

∂ I q( ) p
p∂

∂ I p( )=

c–

I q( ) c q( )ln– A+=

A 0=

0 q 1≤ ≤

c 1=

I p( ) p( )ln–=

H R( ) pi pilog
i 1=

n

∑–=
23



high (low) uncertainty. Entropy is the mathematical function that mea-
sures the uncertainty of a distribution. This is consistent with our intu-
ition that maximum entropy corresponds to maximum uncertainty.

If the distribution collapses to one certain single event j whose
, all other , then H = 0, a minimum. You can also show

that the entropy takes its maximum value, log(n), when for

all i, i.e. when all outcomes have an equal chance and there is maximal
uncertainty.

Having established the notion that the entropy of a probability distri-
bution reflects the expected amount of information, we can now quan-
tify the information gained upon changing the distribution as a result
of new information. Let us assume we have a prior distribution of a
random variable X which we denote by P. Upon arrival of new informa-
tion, a posterior distribution Q is established. What is the consequent
reduction in uncertainty (decrease in entropy) in this process? One
obvious choice is the relative entropy:

(A 8)

The -log( ) function is convex, so that, by Jensen’s inequality, the aver-
age of the is greater than the -log( ) of the average of

. Therefore,

Therefore, is strictly non-negative, and is zero if and only if
identically. can be thought of as a “distance” between

two probability distributions.

To maintain maximum uncertainty given some new information, our
goal is to minimize this relative entropy or “distance” between the prior
and posterior distributions.

p j 1= pi 0=

pi 1 n⁄=
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APPENDIX B:
DETERMINING THE
RISK-NEUTRAL
DISTRIBUTION FROM
HISTORICAL RETURNS

Consider a stock whose spot price is . Assume that investors believe

the future return distribution of the asset is given by a prior
. Our goal is to infer the risk-neutral distribution

from subject to the constraint that the

mean of the risk-neutral stock distribution must equal the stock for-
ward price. We determine the risk-neutral distribution by minimizing
the relative entropy between P( ) and Q( ) subject to Q( ) satisfying the
forward condition.

We seek  so that

 (B 1)

such that

 (B 2)

and

 (B 3)

where  is the current riskless interest rate.

In some cases we will also have a good idea of the current value of the
stock’s at-the-money implied volatility. In that case we will add to
Equation B2 and Equation B3 the further constraint that the at-the-
money implied volatility produced by the distribution Q( ) is equal to
the at-the-money implied volatility of the stock.

Solving the above equations, we obtain the risk-neutral distribution

 (B 4)

where the constant can be found numerically by ensuring that it sat-
isfies the forward condition

 (B 5)

Because  in Equation B4 is always non-negative, so is .

S0
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APPENDIX C:
A DERIVATIVE ASSET
ALLOCATION MODEL
AND THE EQUILIBRIUM
RISK-NEUTRAL DENSITY

In this appendix, we present a simple derivative asset allocation model
and give a possible financial economic interpretation of the results
obtained in this paper based on the maximal entropy principle. Con-
sider an economy in equilibrium with total investor wealth W0. There
is a market for an equity index, a riskless bond, and a complete range
of derivative instruments on the index. We assume that there is a rep-
resentative investor10 with a subjective market view expressed
through a conditional probability density , where is

the spot index level. We also assume the return on the riskless bond
over the period T is rf. The representative investor allocates a portion
of the total initial wealth to the riskless bonds and the remaining
wealth to the risky assets. Let α be the portion allocated to riskless
bonds, and be the portion allocated to risky assets. Since the
risky assets can be replicated with a portfolio of Arrow-Debreu securi-
ties, the investor can simply find an optimal portfolio of Arrow-Debreu
securities. An Arrow-Debreu security with parameter E has a price
given by

(C 1)

where is the discount factor and is the

risk-neutral probability density. The payoff of the Arrow-Debreu secu-
rity at the expiration date is, by definition,

(C 2)

Let be the portion of the fraction allocated to risky
assets that is invested in Arrow-Debreu security with parameter E. At
the end of period T, the total investor wealth will be

(C 3)

where

(C 4)

Note that

(C 5)

10.  See Constantinides (1982).
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If the representative investor changes the allocation , the sup-
ply and demand for the Arrow-Debreu security will also change and
thus so will the shape of the risk-neutral density function

. Therefore, to achieve a market equilibrium, the repre-

sentative investor must solve the asset allocation problem by maximiz-
ing the expected utility :

(C 6)

subject to the constraints:

(C 7)

where the expectation operator Ep is under measure P. The first order
conditions for the constrained optimization problem are

(C 8)

(C 9)

(C 10)

(C 11)

(C 12)

and

(C 13)

where are three Lagrange multipliers corresponding to

the three constraints in Equation C7, respectively. From Equation C8
and C9 we obtain
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(C 14)

and

(C 15)

From Equations C8, C14 and C15 we have

(C 16)

where

(C 17)

Using Equations C11, C15 and C16, we get

(C 18)

Using the constraints (C12) and(C13), Equation (C16) leads to

(C 19)

These results so far are independent of the particular functional form
of the utility function as long as the utility function is monotonically
increasing and concave. We now specialize in an exponential utility
given by

(C 20)

Using Equations C16, C17, C18 and C20, one can show that

(C 21)

where constant c0 and c1 satisfy

(C 22)
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(C 23)

and that we have, using Equation C17,

(C 24)

We can now carry out the optimization program as follows.

Step 1. From Equations C21, C12 and C13, we can numerically solve
for constant c0 and c1, and thus obtain the risk-neutral distribution
Q. We point out that the constant c0 and c1 (and thus the risk-neu-
tral distribution Q) is independent of the parameter, b, of the utility
function. It only depends on the prior distribution P, and the forward
price constraint Equation C13! The parameter b is characteristic of
the representative investor’s risk aversion. It is essential that the
risk-neutral distribution be independent of the investor’s risk aver-
sion! In our derivation of distribution Q, we relied only on the fact
that the investor’s utility function is of exponential form.

Step 2. From Equation C24, we can solve for , which does
depend on parameter b.

Step 3. From Equation C23, we can solve for .

Step 4. From Equations C15, C19 and C22 we solve for , , and
.

Finally, the representative investor’s allocation of the Arrow-Debreu
security with parameter E, ω(E), can be found from Equation C18,
which of course depends on the risk aversion parameter b.

The most important feature of this solution to the asset allocation
problem is that the risk-neutral probability density function

is of the form given by Equation C21 subject to the nor-

malization constraint and Equation C13. This is the same solution as
that given by the minimal relative entropy approach in Equation B4,
provided that the representative investor chooses the realized histori-
cal distribution as the subjective prior distribution P.
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